

Proportional Valve Group Modules PVSK

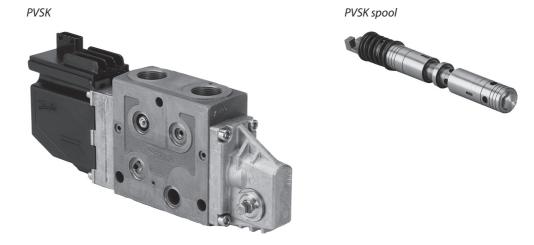
PVSK module with integrated diverter valve and P-disconnect function

Revision history

Table of revisions

Date	Changed				
May 2014	Converted to Danfoss layout – DITA CMS				
Dec 2010	New back cover	ВВ			
Jan 2010	Drawings changed	ВА			
Jan 2010	Japan location	AB			
Jun 2004	First edition	AA			

Technical Information	PVSK module with integrated diverter valve and P-disconnect function				
Contents					
Introduction	Specification and code number for PVSK modules				
PVSK function	PVSK characteristics				
Dimensions	Stay bolt set, PVAS for PVSK				
Specifications					


PVSK module with integrated diverter valve and P-disconnect function

Introduction

Danfoss introduces PVSK-modules with integrated diverter valve and P-disconnect function.

The module is intended for cranes, telescope lifts and other applications that have special demands on functionality and safety.

The PVSK-module can be integrated in PVG 32 valve groups for open- as well as closed-center systems.

Functions of the PVSK-module:

- When the diverter valve is in neutral position, there is no pressure (only tank pressure) in the P-channel of the valve group.
- When the diverter valve spool is actuated in A-direction, it enables the basic modules in the PVG-group to receive pump flow supply.
- When the diverter valve spool is actuated in B-direction, it enables the (High Pressure Carry Over) HPCO-port in the PVSK module and the P-cannel in the valve group to receive pump flow supply.

Specification and code number for PVSK modules

Specification and code number for PVSK modules

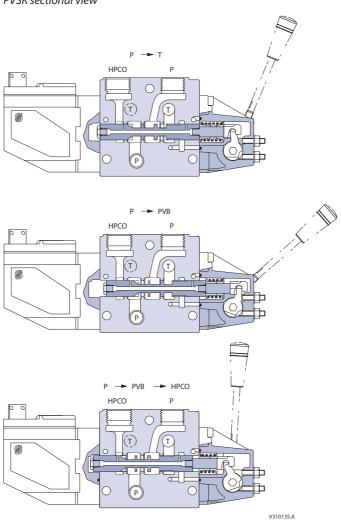
Symbol	Description	Code no.
P1 157-418.10	Open and closed center inlet with pilot supply for electrical actuation Max. pump pressure 350 bar [5076 psi] Max. pump flow 120 l/min [31.7 US gal/min] P = ¾"; HPCO = ¾"	157B6961

Technical Information PVSK module with integrated diverter valve and P-disconnect function

Introduction

Specification and code numbers for PVSK spools

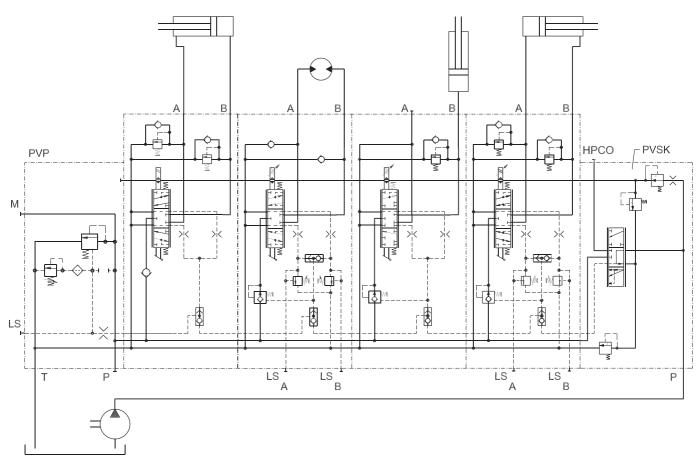
Specification and code number for PVSK spools


Symbol	Description	Code no.
T P 157-539.10	4 way - 3 position spool for fixed displacement pump HPCO flow 40 l/min [10.57 US gal/min] Open neutral position P \rightarrow T	157B9657*
T P 157-540.10	4 way - 3 position spool for fixed displacement pump HPCO flow 40 l/min [10.57 US gal/min] Closed neutral position $P \rightarrow T$	157B9658*

^{*} PVSK spool must be option mounted.

PVSK module with integrated diverter valve and P-disconnect function

PVSK function


As the PVSK-module is provided with pump (P) and HPCO (High Pressure Carry Over) connections, the standard pump connection in PVP, PVPV or PVPM must be sealed with a steel plug (see example on page 6). Note that the steel plug is not included upon delivery. In neutral position, the spool in the PVSK-module interrupts the connection from the pump to the P-channel in the valve group. This not only ensures a low pressure (tank pressure) in the P-channel, but also a low pressure-drop in flow circulating between pump and tank (see *PVSK characteristics* on page 7).

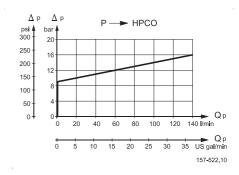
As the PVSK-module replaces endplate PVS/PVSI, the code number field (field 11) in the specification sheet must be left open. In general, the diverter function must be specified as a working function PVB, which means that PVE, PVSK spool and PVM must be specified separately (see PVG 32 specification sheet *Specifications* on page 10).

To ensure an adequate supply to the PVE pilot reduction valve, the tank channel of PVSK includes a backpressure valve. In open-centre systems, the pump flow must be min. 40 l/min (10.57 US gal/min) to maintain a sufficient pressure-drop across the backpressure valve.

Technical Information PVSK module with integrated diverter valve and P-disconnect function

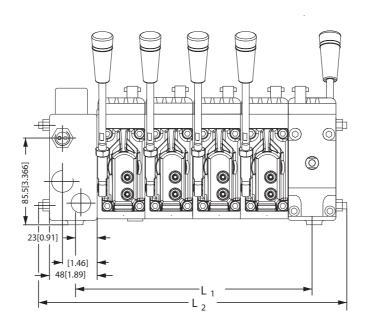
PVSK function

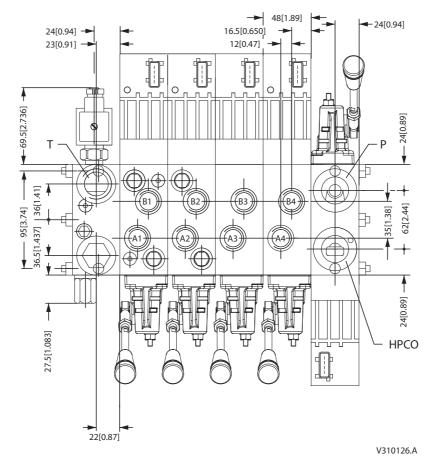
157-420.12


As the PVSK-module has an integrated pilot oil supply, always use standard PVP 32 without pilot oil supply in PVG 32 valve groups.

PVSK characteristics

Pressure drop $P \rightarrow T$; PVSK spool in neutral position




Pressure drop $P \rightarrow T$ in PVP

Dimensions

Because of limited space conditions, PVE and PVM on the work sections have to be mounted as shown on the above drawing.

PVSK module with integrated diverter valve and P-disconnect function

Dimensions

Stay bolt set, PVAS for PVSK

Qty, Basic modules	L1	L2	Code no.	Weight	
				kg	[lb]
1	95	165	157B8021	0.25	[0.55]
2	143	213	157B8022	0.30	[0.66]
3	191	262	157B8023	0.35	[0.77]
4	239	311	157B8024	0.45	[0.99]
5	287	360	157B8025	0.50	[1.10]
6	335	409	157B8026	0.55	[1.21]
7	383	458	157B8027	0.65	[1.43]
8	431	507	157B8028	0.70	[1.54]
9	479	551	157B8029	0.75	[1.65]
10	528	600	157B8030	0.85	[1.87]

PVSK module with integrated diverter valve and P-disconnect function

Specifications

PVG 32 specification sheet

Danfoss
0-1

PVG 32 Specification Sheet

Subsidiary / Dealer	PVG No.
Customer	Customer No.
A. P. C.	
Application	Revision No.

	Function	A-port						B-port
0	Inlet		P=	bar				
		а	f			П	е	С
1		b	LS _A =	bar	LS_B	=	bar	b
2		а	f				е	С
		b	$LS_A =$	bar	LS_B	=	bar	b
3		а	f				e	С
		b	LS _A =	bar	LS_B	=	bar	b
4		а	f				e	С
		b	LS _A =	bar	LS _B	=	bar	b
5		a	f	I			e	С
		b	LS _A =	bar	LS _B	=	bar	b
6		a b	f LS _A =	bor	LS _B		e	c b
		а	f	Dai	LOB	_	bar e	
7		b	LS _A =	har	LS _B	_	bar	c b
		а	f	Dui	LOB		e	c
8		b	LS _A =	bar	LS _B	=	bar	b
_		а	f		5		e	С
9		b	LS _A =	bar	LS_B	=	bar	b
40		а	f				е	С
10		b	LS _A =	bar	LS_B	=	bar	b
11		а	f				е	С
'''		b	LS _A =	bar	LS_B	=	bar	b
12		а	f				е	С
12		b	LS _A =	bar	LS_B	=	bar	b
13		а	f				e	С
		b	LS _A =	bar	LS_B	=	bar	b
14		а	f				е	С
		b	LS _A =	bar	LS _B	=	bar	b
15	End section							
16	PVAS section		-					
17	Reserved for pai	nting						

Comments	
Filled in by	Date